首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97531篇
  免费   9508篇
  国内免费   5730篇
电工技术   7093篇
综合类   7703篇
化学工业   12447篇
金属工艺   8158篇
机械仪表   7564篇
建筑科学   6421篇
矿业工程   2428篇
能源动力   4595篇
轻工业   4919篇
水利工程   1821篇
石油天然气   3763篇
武器工业   972篇
无线电   12401篇
一般工业技术   9735篇
冶金工业   4879篇
原子能技术   1366篇
自动化技术   16504篇
  2024年   176篇
  2023年   1317篇
  2022年   2368篇
  2021年   2923篇
  2020年   3048篇
  2019年   2515篇
  2018年   2387篇
  2017年   3527篇
  2016年   3821篇
  2015年   4326篇
  2014年   6415篇
  2013年   6307篇
  2012年   7796篇
  2011年   8394篇
  2010年   5785篇
  2009年   6132篇
  2008年   5591篇
  2007年   6723篇
  2006年   5874篇
  2005年   4547篇
  2004年   3912篇
  2003年   3381篇
  2002年   2721篇
  2001年   2360篇
  2000年   1907篇
  1999年   1488篇
  1998年   1223篇
  1997年   1193篇
  1996年   941篇
  1995年   753篇
  1994年   640篇
  1993年   449篇
  1992年   421篇
  1991年   362篇
  1990年   268篇
  1989年   167篇
  1988年   139篇
  1987年   72篇
  1986年   78篇
  1985年   64篇
  1984年   64篇
  1983年   47篇
  1982年   29篇
  1981年   21篇
  1980年   28篇
  1979年   19篇
  1977年   9篇
  1975年   5篇
  1959年   13篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
101.
张启东  钟凯  邵俊宁 《中国冶金》2019,29(12):19-24
为了研究包衬侵蚀对钢水温降的影响规律,通过ANSYS有限元软件以及ParaMesh网格随移技术建立了考虑包衬侵蚀的钢包传热计算模型,研究并分析了包衬侵蚀对包衬及钢水温度的影响规律。结果表明,包衬侵蚀对包衬温度影响较大,在相邻两个修包周期内,包衬侵蚀造成渣线和包壁的包衬内部(工作层与永久层交界处)温差为14~114 K;包衬侵蚀导致包壳外表面温度升高,包壳向外散热增加,与此同时,包衬受侵蚀变薄,蓄热减少,两者同时作用导致包衬侵蚀对钢水温降影响不大,最高不超过1 K,在实际生产中可以适当地忽略钢包侵蚀对钢水温降的影响。  相似文献   
102.
近年来,微波加热因其高效性和清洁无污染等优点广泛应用于各个领域。然而,微波加热的不均匀性限制了微波作为高效加热能源的应用。通过测量和分析加热腔中的电场分布情况可以帮助设计人员改进微波加热腔体设计,提高微波加热的均匀性。现有的场强测量设备均为有线设备,应用场景极为有限。因此,本文提出了一种由探头、接收机和上位机三部分组成的无线场强探测传感器。介绍了无线场强探测传感器的结构和原理,采用横电磁波小室进行校准。通过一系列测量实验表明实测值与标准场强仪测量值一致性较好,可满足工程测量需求。  相似文献   
103.
文中提出了一种利用有限数量的相量测量单元(PMU)和相量数据集中器(PDC)设计最优监控结构的方法。通过在大量的设定值场景下,使电力系统可观测性曲线的期望值最大化,同时使通信基础设施成本最小化,最终确定PMU和PDC的最佳位置。提出了一种非线性动态扩展卡尔曼滤波(EFK)状态观测器。这种状态观测器可以将暂态行为转换为由代数微分方程描述的广域电力系统,而无需非线性反演技术。最后以IEEE-5电力系统为例,说明了该方法的有效性。  相似文献   
104.
ZnO–SnO2 nanocubes were used as promising material for efficient sensing of p-nitrophenol and faster photocatalytic degradations of dyes like methyl orange (MO), methylene Blue (MB) and acid orange 74 (AO74). ZnO–SnO2 nanocubes were prepared by the facile solution process at 50 °C using Zn(NO3)2·6H2O and SnCl2·2H2O as a precursor in the presence of ethylenediammine. The synthesized material was examined for its morphological, structural, crystalline, optical, vibrational, and compositional studies by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy. FESEM studies revealed the formation of well-defined ZnO–SnO2 nanocubes where the structural examinations revealed the formation of a crystalline tetragonal rutile phase for SnO2 with some crystal sites doped with Zn. The as-synthesized nanocubes were explored for their photocatalytic activities towards three different dye viz. MO, MB, and AO74. Practically, complete degradation of AO74 was seen within 4 minutes of photo-irradiation in the presence of 0.05 g ZnO–SnO2 nanocubes. However, 97.17% and 41.63% degradations were observed for MB and MO within 15 and 60 minutes, respectively. All the dye degradation processes followed the pseudo-first-order kinetic model. Moreover, the as-synthesized nanocubes were utilized to fabricate highly sensitive and selective fluorescent chemical sensor for the detection of p-nitrophenol (PNP). ZnO–SnO2 nanocubes showed a very low detection limit of 4.09 μM for the detection of PNP as calculated according to the 3σ IUPAC criteria. Further, the as-synthesized ZnO–SnO2 nanotubes were found to be highly selective for p-nitrophenol as compared to the other two isomers.  相似文献   
105.
Terahertz (THz) imaging is expected to become powerful tools for non-destructive inspections. To ensure the practical use of THz non-destructive monitoring, versatile THz imagers with adjustable designs that can eliminate the complexities and the bulkiness of the device are urgently required. Herein, a self-aligned filtration process for a 2D, free-standing carbon nanotube film array and its application to a THz video camera patch are reported. The presented techniques enable a) to freely design the camera size, sensor array pattern, and suspended shape according to its applications, b) to cut the camera patch into desired shapes, and c) to attach them to the objects that are intended to be measured. Real-time, non-destructive monitoring of various infrastructures is demonstrated. These results indicate that it can function regardless of restrictions, such as the shapes and locations of the measurement samples, thus providing a strong possibility for use in future non-destructive sensor networks.  相似文献   
106.
In the context of the high-level radioactive waste disposal CIGEO, the corrosion rate due to microbially influenced corrosion (MIC) has to be evaluated. In France, it is envisaged to dispose of high- and intermediate-level long-lived radioactive waste at a depth of 500 m in a deep geological disposal, drilled in the Callovo-Oxfordian claystone (Cox) formation. To do so, a carbon steel casing will be inserted inside disposal cells, which are horizontal tunnels drilled in the Cox. A specific cement grout will be injected between the carbon steel casing and the claystone. A study was conducted to evaluate the possibility of MIC on carbon steel in the foreseeable high radioactive waste disposal. The corrosiveness of various environments was investigated at 50°C and 80°C with or without microorganisms enriched from samples of Andra's underground research laboratory. The monitoring of corrosion during the experiments was ensured using gravimetric method and real-time corrosion monitoring using sensors based on the measurements of the electrical resistance. The corrosion data were completed with microbiological analyses including cultural and molecular characterizations.  相似文献   
107.
Spin-coated chalcostibite CuSbS2 thin films (≈500 nm thick) were fabricated and the influence of the drying temperature on the structural, morphological, optical and thermoelectric properties of the films was investigated. Crystalline phase-pure chalcostibite has been obtained for the films dried at 180 °C and 210 °C, while below 180 °C these films are partially amorphous. Surprisingly, at drying temperature of 240 °C, a CuxS secondary phase appeared. The increase of the drying temperature leads to the increase of the particle size and the decrease of the optical band gap, which is interesting for optoelectronic applications. The highest power factor value was achieved for the film dried at 210 °C, due to the inexistence of secondary phases, which allowed realizing a stable thermoelectric touch sensor with a Vsignal/noise of 5. In addition, this film was tested as a photovoltaic (PV) device and a power conversion efficiency (PCE) of 0.030% with an open-circuit voltage (VOC) of 0.36 V, a short-circuit current density (JSC) of 0.278 mAcm?2 and a fill factor (FF) of 0.27 were obtained. Therefore, this work evidences a pathway toward developing bi-functional devices with simultaneously thermoelectric touch sensor and photovoltaic functions.  相似文献   
108.
《Ceramics International》2021,47(21):30221-30233
A series of BaGd2O4:Bi3+,Eu3+ phosphors with dual-emitting centers were prepared by high-temperature solid-state method. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), fluorescence spectroscopy, lifetime decay curve and variable temperature emission spectroscopy were used to systematically study the structure, luminescence performance and temperature characteristics. Under ultraviolet (UV) excitation, the BaGd2O4:Bi3+,Eu3+ phosphor showed a broad-band emission in the blue region corresponding to transitions of Bi3+ ions and the sharp red light emission corresponding to Eu3+ ions. The Bi3+ and Eu3+ ion emission peaks were well-separated, which meets a prerequisite for efficient temperature signal resolution measurement. The fluorescence intensity ratio (FIR) technique was used to measure the different temperature response characteristics between Bi3+ blue emission and Eu3+ red emission. When the temperature varies from 293 K to 473 K, the relative temperature sensitivity (Sr) of BaGd2O4:Bi3+,Eu3+ phosphors is obtained, was determined as 1.0182%K−1. In addition to calculating the relative sensitivity by FIR technology, we can also obtain the value of Sr through experiments and formulas related to the decay life, and found to be 1.0651%K−1. Therefore, BaGd2O4: Bi3+,Eu3+ phosphor is an excellent non-contact optical temperature measurement material.  相似文献   
109.
The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma = 0.3 are conducted and show that confidence interval of hot-film sensor measurement is from-0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage.  相似文献   
110.
Phosphate ester was investigated as a corrosion inhibitor for AISI 1018 carbon steel in carbon dioxide-saturated chloride solutions at different temperatures and pressures. The corrosion tests were realized by electrochemical techniques, weight loss measurements, bubble tests, and a high-pressure/high-temperature autoclave system. The corrosion tests demonstrated that the investigated molecule is an excellent corrosion inhibitor. The inhibiting effect is even bigger at high pressure and temperature than at atmospheric pressure and room temperature. The thermodynamic parameters were calculated and determined to obey the Langmuir isotherm. Polarization studies revealed that the evaluated inhibitor is a mixed type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号